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Abstract. In this paper, we modify Benders’ decomposition method by using concepts from the
Reformulation-Linearization Technique (RLT) and lift-and-project cuts in order to develop an
approch for solving discrete optimization problems that yield integral subproblems, such as those
that arise in the case of two-stage stochastic programs with integer recourse. We first demonstrate
that if a particular convex hull representation of the problem’s constrained region is available
when binariness is enforced on only the second-stage (or recourse) variables, then the regular
Benders’ algorithm is applicable. The proposed procedure is based on sequentially generating a
suitable partial description of this convex hull representation as needed in the process of deriving
valid Benders’ cuts. The key idea is to solve the subproblems using an RLT or lift-and-project
cutting plane scheme, but to generate and store the cuts as functions of the first-stage variables.
Hence, we are able to re-use these cutting planes from one subproblem solution to the next simply
by updating the values of the first-stage decisions. The proposed Benders’ cuts also recognize
these RLT or lift-and-project cuts as functions of the first-stage variables, and are hence shown to
be globally valid, thereby leading to an overall finitely convergent solution procedure. Some
illustrative examples are provided to elucidate the proposed approach. The focus of this paper is
on developing such a finitely convergent Benders’ approach for problems having 0-1 mixed-
integer subproblems as in the aforementioned context of two-stage stochastic programs with
integer recourse. A second part of this paper will deal with related computational experiments.
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1. Introduction

Benders’ decomposition has proven to be a powerful technique for solving
specially-structured large-scale linear and mixed-integer programs since its intro-
duction in 1962 (see Nemhauser and Wolsey (1999), for example). The main idea
behind this approach is to project the original problem onto the space of certain
‘complicating variables’ in order to derive an equivalent master problem, and to
solve this latter problem via a relaxation or branch-and-cut strategy by generating
Benders’ feasibility and optimality cuts as prompted by the subproblems that are
obtained by fixing the complicating variables. Stochastic mathematical programs
constitute one class of problems for which solution procedures rely heavily on the
premise of Benders’ decomposition. The literature on stochastic programs focuses
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largely on two-stage stochastic programs with recourse. (In theory, multi-stage
programs can be handled in a similar fashion via a nested approach, but in practice,
this process is cumbersome to implement.) In these problems, the first-stage
decisions must be made before the relevant random components of the environment
are realized, with the provision that a set of second-stage (or recourse) variables can
be subsequently used to compensate for the ensuing effect of the environment. The
goal of the stochastic program is to optimize the first-stage costs plus the expected
recourse costs. Some notable applications of stochastic programming include
scheduling (Birge and Dempster, 1996), financial planning (Carino et al., 1994),
power generation (Murphy et al., 1982), facility location (Laporte et al., 1994), and
vehicle routing (Laporte et al., 1992). For more information on stochastic program-
ming in general, we refer the reader to recent books on stochastic programming by
Birge and Louveaux (1997) and Kall and Wallace (1994).

There are several popular methods for solving two-stage stochastic LPs with
recourse, and most of these rely on the underlying principle of Benders’ decomposi-
tion. The first-stage investment, resource acquisition, or location-type decisions
represent the complicating variables, and the subproblems determine the best
recourse actions for any given first-stage decisions. A common practice is to
approximate continuous distributions with discrete ones, which allows the expected
recourse function to be calculated as a simple weighted sum. In the case of
stochastic programs with integer recourse, Schultz (1995) has shown that, under
mild conditions, discrete distributions can effectively approximate continuous ones
to any given accuracy. Consequently, assume that there are L possible environments

lor scenarios, j , l 5 1, . . . , L, each occurring with a respective probability of p . Thel
nset of constraints that couples the first- and second-stage decisions, x [ R and

my [ R , respectively, is generally expressed as

l l l lW y 5 h 2 T x ,

l lwhere the (technology) matrix T and the (resource) vector h are known for each
l lpossible scenario j , l 5 1, . . . , L. The matrix W (which is often assumed to be

fixed in order to yield an exploitable subproblem structure, but in general, could be
lstochastic as well, i.e., dependent on j ) is known as the recourse matrix, and it

ldetermines the set of recourse actions, y , that are governed by the net outcome
l lh 2 T x. Given this notation, a typical Benders’ decomposition for the two-stage

stochastic program with recourse would view the given problem in the form

L
lminimize cx 1 O p Q(x, j )l

i51

subject to x [ X ,

l l l l l l l lwhere Q(x, j ) 5 minhq y : W y 5 h 2 T x, y $ 0j for l 5 1, . . . , L, and where X is
nsome nonempty polytope in R , with approximations for the optimal value functions
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lQ(x, j ), l 5 1, . . . , L being generated via Benders’ cuts. In some cases, it can be
shown that every (feasible) first-stage solution results in a feasible second-stage
problem. These problem instances are said to have (relatively) complete recourse,
and in such cases, only optimality cuts are generated in this process.

Several algorithms have been designed to solve stochastic linear programs with
recourse (see Ruszczynski (1999) for a thorough review of this subject). Most of
these methods can be considered as extensions of the L-shaped algorithm that was
proposed by Van Slyke and Wets (1969). For each solution of a suitable relaxed
master problem, the L-Shaped Algorithm solves one subproblem for each of the L
outcomes. If any of the subproblems are infeasible, a feasibility cut is added to the
master problem. Otherwise, the optimal dual multipliers for the set of subproblems
are used to create a single optimality cut for the master problem. Birge and
Louveaux (1988) developed a multicut enhancement to the L-Shaped Algorithm, in
which a separate optimality cut is constructed for each subproblem. Higle and Sen
have used Stochastic Decomposition (1991) and Conditional Stochastic Decomposi-
tion (1994) to greatly reduce the total number of subproblems required to be solved.
At each iteration of these methods, only one subproblem, associated with a
randomly generated sample point, is solved. Optimality and feasibility cuts are
generated as before, and the coefficients of these cuts are updated as more
observations of the sample points are obtained.

Stochastic integer programs are stochastic programs in which some of the
variables are restricted to be integer-valued. The integrality restriction can apply to
the first- and/or second-stage variables. When the second-stage (recourse) variables
are restricted to be integral, the resulting problem is referred to as a stochastic
program with integer recourse. In this case, the problem complexity increases
significantly, since the subproblem for any random outcome is an integer program
whose parameters depend on the fixed first-stage decisions. Moreover, the optimal
value recourse objective function now becomes nonconvex and discontinuous in
general.

Although some solution strategies have been developed for specific applications
of stochastic IPs, relatively few techniques have been developed to solve general
stochastic IPs. We comment here on some recent algorithmic advances that employ
decomposition techniques, and refer the reader to Klein Haneveld and van der Vlerk
(1999) and Schultz et al. (1996) for further discussions. Laporte and Louveaux
(1993) developed the integer L-shaped algorithm (a combination of the L-shaped
method and branch-and-bound) to solve stochastic IPs having binary first-stage
variables and complete (mixed-integer) recourse. This extension constructs optimali-
ty cuts based on independent evaluations of the recourse value function. For
efficiency in an enumerative search process, certain lower bounding functionals on
this recourse value function are also derived. Caroe and Tind (1998) have used
duality theory to develop a more general extension of the L-shaped decomposition
method to solve two-stage stochastic programs with integer recourse. Previously,
Caroe and Tind (1997) had developed a Lagrangian dual approach based on
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applying variable splitting to the first-stage decisions, and then dualizing the
resultant equal-value nonanticipatory constraints. This approach was shown to be
equivalent to computing a hull relaxation in the context of disjunctive programming,
and solving this via the lift-and-project cutting plane technique of Balas et al.
(1993). Cuts derived for one subproblem were lifted to derive valid inequalities for
other subproblems. However, in order to preserve facetial properties in this lifting
process, a separate linear program needed to be solved. We note here that in our
approach, which is geared toward solving the original problem itself (rather than its
relaxation), we show how cuts derived for one subproblem can be directly used for
other subproblems without any intermediate lifting step or auxiliary problem
solution (other than a simple substitution). Moreover, facetial properties are
preserved in a manner that induces finite convergence. For the specific case of

lsimple integer recourse where W 5 [I, 2I], and with a fixed technology matrix and
discretely distributed right-hand sides, Klein Haneveld et al. (1996) have used
theoretical properties of the recourse objective value function to derive a convex
hull representation for the problem. (See Klein Haneveld and van der Vlerk (1999)
for a summary of several other techniques for simple integer recourse problems.)
Caroe and Schultz (1999) have used scenario decomposition and Lagrangian
relaxation within a branch-and-bound framework to solve two-stage stochastic IPs,
and this approach can readily be extended to multistage stochastic programs. Ahmed
et al. (2000) consider two-stage stochastic programs having pure integer second-
stage variables, but mixed-integer first-stage variables. They employ a transforma-
tion that induces a special structure in the discontinuities of the second-stage optimal
value function and based on a characterization of this structure, they design a finitely
convergent branch-and-bound algorithm for the original problem. Promising compu-
tational results are provided on several classes of problems. A specialized approach
for two-stage stochastic IPs with mixed-integer recourse that is similar to ours in
concept, but uses an alternative sequential convexification process based on a
different asymptotically exact cutting plane approach for solving the subproblems,
has been proposed by Higle and Sen (2000). In a different vein, Schultz et al.
(1998) have used Grobner basis techniques within a implicit enumeration strategy to
address the class of problems having integer recourse. Although Grobner bases are
typically expensive to compute, their use becomes relatively more effective when
the same problem is re-solved for different right-hand side values, which is the case
for recourse problems.

Our focus in this paper is to develop a Benders’ decomposition strategy to solve
discrete optimization problems where both the inner and outer state decisions might
involve 0–1 variables, such as those encountered in a two-stage stochastic program
with integer recourse. In Section 2, we begin by describing a relatively similar
conceptual case for which a suitable convex hull representation can be constructed
that permits a finite regular application of Benders’ methodology. This lays the
groundwork for the more usual case discussed in Section 3, where such a
representation is only partially generated in a sequential fashion as needed within
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the context of a Benders’ branch-and-cut approach. This viewpoint facilitates the
generation of valid inequalities during the solution of any given subproblem in a
form that renders them valid for all other subproblems by merely substituting the
revised first-stage decisions in a derived linear functional term, and also enables the
derivation of suitable Benders’ cuts that induce finite convergence. Some numerical
examples are presented to illustrate the proposed methodology. Section 4 addresses
finite convergence issues related to the proposed cutting plane approach for solving
the sub-problems, and Section 5 contains our conclusions and suggestions for future
research.

2. Benders’ partitioning based on a suitable convex hull representation

Since the proposed methodology is relevant to many types of discrete optimization
problems in addition to stochastic IPs, we describe our approach in terms of a
generic problem P that is given below in (1). Although this form does not
specifically correspond to the notation used for stochastic IPs, it should be evident
from the foregoing discussion that the structure of (1) subsumes this class of
problems. (Note that in this context, it would be computationally facile, but not
necessary, to have constant technology and recourse matrices, as variously assumed
in the literature—for example, see Caroe and Tind (1997).)

P: Minimize cx 1 dy (1a)

subject to Ax 1 Dy $ b (1b)

nx [ X, x [ h0, 1j , y [ Y (1c)

nwhere X represents a nonempty polytope in R that is defined in terms of the binary
mvariables x, and Y is a compact subset of R and represents some linear restrictions

on the y-variables, in addition to binary restrictions on a subset (say, y , . . . , y ) of1 p

the variables. By appropriately incorporating an artificial (interval-bounded) variable
column within the y-variable set, we will assume that P is feasible for any fixed
x [ X, x binary, and moreover, we will also assume that an optimum exists for P.

Now, let us define (denoting e as a compatible vector of ones)

Z 5 convh(x, y) : Ax 1 Dy $ b, 0 # x # e, y [ Yj (2a)

; h(x, y) : Gx 1 Hy 1 Fw $ f j, say , (2b)

where for convenience, we have also absorbed any simple bound restrictions within
the inequalities describing (2b). Note that the description (2b) is assumed to be
derived in a higher dimensional space (including a set of new w-variables), as for
example by using the Reformulation-Linearization Technique (RLT) process (see
Sherali and Adams, 1990, 1994, 1999). Note also that aside from the bounding
constraints 0 # x # e on the x-variables, the other constraining restrictions x [ X on
these variables are not included in the definition of Z. (This might be computation-
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ally advantageous in deriving the convex hull representation for Z; also, see
Proposition 2 below for details on how this can be further exploited in the presence
of dual-angular special structures.) Later, we will discuss a sequential scheme for
partially generating this system as needed, but for now, assume that the entire
description of Z is at hand.

Consider the problem

P9: Minimize cx 1 dy (3a)

subject to Gx 1 Hy 1 Fw $ f (3b)
nx [ X, x [ h0, 1j . (3c)

PROPOSITION 1. P9 has an optimal solution, and moreover, it is equivalent to P
in the sense that if (x*, y*, w*) solves P9, where ( y*, w*) is an extreme point
optimum to P9 for x fixed at x*, then (x*, y*) solves P.

Proof. By our assumptions on P, the set Z given by (2) is bounded and P9 is
feasible. Hence P9 has an optimum (x*, y*, w*) where ( y*, w*) satisfies the
condition stated in the proposition. Moreover, since P9 is a relaxation of P, and its
constraints imply Ax 1 Dy $ b, x [ X, and the linear constraints describing y [ Y, it
is sufficient to show that y* satisfies the required binary restrictions on its

¯ ¯ ¯subcomponents. From (2), any extreme point (x, y ) of Z satisfies y [ Y (including
the binary restrictions). Furthermore, if we define Z(x*) 5 Z > h(x, y) : x 5 x*j, then

¯ ¯since Z(x*) is a face of Z, any extreme point (x*, y ) of Z(x*) has y [ Y as well.
Noting that Z(x*) defines the feasible region of P9 when x is fixed at x*, and that
(x*, y*) is a vertex of Z(x*), we have (x*, y*) is feasible, and therefore optimal, to
P. This completes the proof. h

2.1. SPECIALIZED MODIFICATIONS FOR PROBLEMS HAVING A DUAL ANGULAR

STRUCTURE

Before proceeding further, it is instructive to comment on a modified derivation of
the equivalent representation P9 when the original problem P exhibits a dual-angular
structure (as in the special case of two-stage stochastic IPs). This analysis also lends
further insights into the flexibility of constructing only partial convex hull
representations in deriving an equivalent restatement of the problem to which
Benders’ decomposition method is applicable. Toward this end, suppose that P
possesses a dual-angular structure as revealed by the coefficient matrices given in
the form

1 1 1 1A D b d
? ? ? ?A ; , D ; , b ; , and d ; ,? ? ? ?? ? ? ?3 4 3 4 3 4 3 4S S S SA D b d

(4a)
swhere the vector y is also accordingly partitioned into components y , for s 5

1, . . . , S, with y [ Y being replaced by
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sy [ Y ;s 5 1, . . . , S . (4b)s

Here, for s 5 1, . . . , S, each Y is assumed to impose certain polyhedral restrictionss
son the (recourse) variables y (pertaining to scenario s), including binary restrictions

on a subset of variables.
Now, let us define

s s s s s sZ 5 convh(x, y ) : A x 1 D y $ b , 0 # x # e, y [ Y j (5a)s s

and let

sZ9 5 h(x, y) : (x, y ) [ Z for each s 5 1, . . . , Sj . (5b)s

Note that in general, Z # Z9, and that is is relatively easier to characterize Z9 than it
sis to construct Z. Moreover, Z9 retains the separability of the (recourse) variables y ,

s 5 1, . . . , S. The following results asserts that the equivalence of P9 and P as stated
in Proposition 1 remains valid when Z is replaced by Z9 under (4). In this context,
similar to (2b), the construction (5) would yield P9 in the form given by (3) where
the coefficient matrices in (3b) would possess the structure

1 1G H
? ?G ; , H ; ,? ?? ?3 4 3 4S SG H

(6)
1 1F f

? ?? ?F ; , and f ; ,? ?3 4 3 4S SF f

and where the higher-dimensional vector w is also decomposed into the corre-
ssponding components w , for s 5 1, . . . , S.

PROPOSITION 2. Suppose that P has a dual angular structure as given by (4), and
let P9 be defined by replacing Z with the set Z9 given by (5). Then P9 is equivalent
to P in the sense asserted by Proposition 1.

Proof. Let (x*, y*, w*) solve P9, where ( y*, w*) is as stated in the proposition.
Note from (6) that when we fix x 5 x*, the problem P9 separates into S problems
(by scenarios) given as follows:

s s sminimizehd y : (x*, y ) [ Z j . (7)s

Again, because (5) includes the hypercube restrictions 0 # x # e, we have that
sZ (x*) ; Z > h(x, y ) : x 5 x*j is a face of Z , and therefore, its extreme pointss s s

ssatisfy the required binary restrictions on y . Noting that Z (x*) is the feasible regions

of (7), this completes the proof. h

In what follows, for the sake of simplicity in notations and generality, we will
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assume that the set Z conforms with Z9 whenever we have the dual angular structure
exhibited by (4), with the system (2b) possessing the structure exhibited by (6).
Hence, whenever we employ (2b), or develop lower-level RLT relaxations for the
system h?j in (2a), we assume via Proposition 2 that in the presence of a
dual-angular structure, we respectively have the structure (6), or that we corre-
spondingly apply the lower-level RLT relaxation to the system h?j in (5a) for each
s 5 1, . . . , S. We will periodically make some related comments in the sequel to
re-emphasize this feature.

2.2. DERIVATION OF A BENDERS’ APPROACH FOR PROBLEM P9

Assuming tentatively that we have explicitly constructed the equivalent formulation
P9, we can apply Benders’ partitioning to solve this problem as follows:

Minimize hcx 1 minimumhdy : Hy 1 Fw $ f 2 Gxjj (8a)
nx[X>h0,1j

i.e.,

Minimize hcx 1 maximumhp( f 2 Gx) : pH 5 d, pF 5 0, p $ 0jj . (8b)
nx[X>h0,1j

Since we have assumed that the inner problem in (8) is feasible and bounded for
nany fixed x [ X > h0, 1j letting

qhp , q 5 1, . . . , Qj ; vert(L) , (9a)

where

L ; hp : pH 5 d, pF 5 0, p $ 0j , (9b)

we obtain the following projected form of P9.

Minimize z (10a)
qsubject to z $ cx 1 p ( f 2 Gx) for q 5 1, . . . , Q (10b)

nx [ X > h0, 1j . (10c)

Recall that (10) is the Benders’ (overall) master program, and the inner minimiza-
tion problem in (8a), or its dual in (8b), for any fixed x is referred to as the Benders’
subproblem. This subproblem generates the Benders’ cuts (10b) (along with upper
bounds on the problem).

REMARK 1. In case we do not incorporate suitable artificial variable column(s) as
needed to ensure that the inner problem in (8a) is feasible for any fixed x [ X >

nh0, 1j , we would also need to generate feasibility or extreme direction cuts in (10)
rof the following type, where d , r 5 1, . . . , R, are extreme directions of the

polyhedron L that is defined in (9).
r

d ( f 2 Gx) # 0 , for r 5 1, . . . , R . (11)

REMARK 2. Note that in a practical implementation, we need not solve the relaxed
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Benders’ master programs to optimality at each iteration. Rather, a branch-and-cut
approach could be adopted, with the enumeration process set up only once, and with
the current relaxed master program (RMP, say) being used to determine lower
bounds, the subproblem (SP, say) providing upper bounds, and the (globally valid)
Benders’ cuts (10b) being generated as needed, i.e., whenever an incumbent solution
to the current relaxed master program is found that has an objective value less than
the present upper bound on the overall problem. Geoffrion and McBride (1978) and
Adams and Sherali (1993) provide details for such an approach. Any actual
application of Benders’ method discussed here can be adapted to follow such a
scheme.

EXAMPLE 1. As an illustration, consider the following example.

P: Minimize 2x 2 2y (12a)1 1

subject to 24x 2 3y $ 26 (12b)1 1

(x , y ) binary . (12c)1 1

Figure 1 depicts the solution of this problem and identifies the set Z, along with the
key facet that describes this set. By (2), this set Z is given by

Z 5 convh(x , y ) : 24x 2 3y $ 26, 0 # x # 1, y binaryj . (13)1 1 1 1 1 1

Since there is only one y-variable for this problem, we can develop the complete
RLT representation of Z by multiplying each of the constraints in (13) by the two
bound-factors associated with y . This yields the following equivalent Problem P9 as1

defined by (3):

Minimize 2x 2 2y (14a)1 1

subject to 3y 2 4w $ 0 (14b)1

24x 2 6y 1 4w $ 26 (14c)1 1

y 2 w $ 0 (14d)1

x 2 w $ 0 (14e)1

2x 2 y 1 w $ 21 (14f)1 1

w $ 0 (14g)

x binary . (14h)1

Note that (14b) and (14c) are obtained by the RLT product of 24x 2 3y $ 261 1

with y and (1 2 y ), respectively, and (14d)–(14g) are bound-factor RLT product1 1

constraints obtained via the products of the bounding inequalities 0 # x # 1 with y1 1

and with (1 2 y ). Observe that the surrogate of (14b) and (14f) according to1

(3y 2 4w) 1 4(2x 2 y 1 w 1 1) $ 0 (15a)1 1 1

produces the required key facet of Z identified in Figure 1 as
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Figure 1. Illustration for Example 1.

24x 2 y $ 24 . (15b)1 1

In essence, by projecting the region of (14) onto the (x , y ) space (only for1 1

illustrative purposes; this combinatorial step would not be performed in actual
implementations), we get that (14) can equivalently be written as follows.

Minimize 2x 2 2y (16a)1 1

subject to 24x 2 y $ 24 (16b)1 1

x binary, 0 # y # 1 . (16c)1 1

We could now apply Benders’ partitioning to solve (14), which in essence, would be
tantamount to applying this method to (16). For the sake of convenience, we apply it
directly to (16) and obtain the decomposition

min h2x 1 maxhp (4x 2 4) 2 p : 2p 2 p # 22, (p , p ) $ 0jj . (17)1 1 1 2 1 2 1 2
x [h0,1j1

Noting that the extreme points of the inner maximization problem in (17) are
(p , p ) 5 (2, 0) and (0, 2), and that (12) is feasible for any binary x , the complete1 2 1

Benders’ master program is derived as follows.

Minimize z (18a)

subject to z $ 7x 2 8 (18b)1

z $ 2x 2 2 (18c)1

x binary . (18d)1
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The optimum to (18) (which would ultimately be generated via the usual process of
*applying Benders’ methodology) is given by x 5 0 and z* 5 22. Solving (16) (or1

* * *(14)) with x fixed at x 5 0 yields y 5 1 (and w* 5 0), with v(x ) 5 z* 5 22.1 1 1 1

Since the relaxed master problem and subproblem have the same objective values,
we have obtained an optimal solution to (12).

3. Benders’ partitioning using a sequential convex hull constructive process

The approach (8)–(10) is based on an a priori generation of the convex hull
representation Z defined in (2) (or Z9 defined by (5) under the structure (4)). If the
size of the problem permits this construction (in particular, if we have few
y-variables, or each partitioned constraint set in (5a) has a relatively simple
structure), then this is a viable option, and leads to a usual application of Benders’
decomposition as per Remark 2. Otherwise, we can generate a partial representation
for Z as needed in a sequential convexification process, as discussed below. The
following remark first highlights a key concept that is used in developing our
proposed solution process.

¯REMARK 3. Let Y denote the continuous relaxation of Y, and let J* 5 h j : y isj

restricted to be binary in Yj. For any J # J*, define

J ¯Z 5 convh(x, y) : Ax 1 Dy $ b, 0 # x # e, y [ Y, y binary ; j [ Jj . (19)j

5Note that Z along with x [ X represents the continuous relaxation of (1), and
J* JZ ; Z . Since Z # Z for each J # J*, valid Benders’ cuts can be derived from any

Jsuch set Z . In fact, using the RLT process, we can construct a higher dimensional
Jrepresentation of Z for any J # J* that could be characterized as a surrogate of the

representation (2b) for Z using suitable nonnegative multipliers (see Sherali and
JAdams, 1990, 1994). Hence, Benders’ cuts derived via the relaxation Z substituted

in place of Z would correspond to cuts obtained via some feasible, though not
necessarily extreme point, solution to L. Likewise, Benders’ cuts derived via

5 Jlower-level RLT applications to Z (levels less than uJu for the case of Z ) based on
considering binariness on the variables y for j [ J, but not necessarily havingj

Jconstructed the entire convex hull representation Z , would be valid as well.
Moreover, since the description of such a lower level representation can be obtained

Jby surrogating the constraints of Z , and hence those of Z, the resulting cuts can also
be viewed as implicitly obtained from feasible, nonextremal solutions to L.

Based upon these insights, we now develop a finitely convergent method for solving
Problem P, or Problem P9 via (8)–(10), by sequentially constructing a partial convex

¯hull representation as needed. In this approach, for any fixed x, the corresponding
Benders’ subproblem in (8b) that is reproduced below as
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¯SP: maximize hp( f 2 Gx ) : pH 5 d, pF 5 0, p $ 0j , (20)

is solved implicitly via an RLT-based or lift-and-project cutting plane approach (see
Balas et al., 1993; Sherali et al., 2000). In the proposed method, we explicitly
generate appropriate surrogated versions of Z as needed to derive valid RLT or
lift-and-project cutting planes as needed for solving the subproblems. The key idea
is that these generated cuts are characterized as functions of x, and can therefore be
updated and re-used for subsequent subproblems based on the corresponding fixed
value of x. Likewise, the Benders’ cuts derived via the solution of the subproblems
using such a cutting plane approach recognize these cuts as function of x, and are
hence shown to be globally valid. This leads to an overall finitely convergent
solution process.

REMARK 4. To set ideas, let us first consider a preliminary rudimentary approach
for solving Problem P9 via Benders’ decomposition. This simple approach solves
various restricted versions of the subproblems (20) (or relaxed versions of its dual)
as follows. For the first instance of Problem SP, we let k 5 0 and take J 5 5. Usingk

J 5kZ 5 Z as the current RLT representation within the inner minimization in (8a), we
solve SP and generate the associated Benders’ constraint for the relaxed master
problem. At each subsequent visit to SP, if the current subproblem yields a binary
y-solution, we use this solution to update the incumbent solution and to generate a
Benders’ cut. Otherwise, we increment k and take J 5 J < h jj where y isk k21 j

Jkrestricted to be binary, but currently has a fractional value. We then construct Z
as the updated RLT representation using the scheme described in Sherali and
Adams (1990, 1994), solve SP, and generate the associated Benders’ constraint
for the relaxed master problem.

Note that this process creates a nested sequence of sets J # J # J # ? ? ?0 1 2

leading up to J* in the worst case. Within a finite number of visits to SP, this
procedure generates cuts based on Z via either a partial or full representation of this
set, thereby deriving valid upper bounds from each such SP, and resulting in an

noverall finitely convergent algorithm based on the finiteness of the set X > h0, 1j .
Alternatively, we could derive valid upper bounds from each subproblem by
continuing to expand the set J at each iteration k to include fractionating y-variablek

indices until an integer feasible y-solution is obtained. This alternative is more in the
conceptual spirit of the proposed approach as explained below.

Clearly, the approach described in Remark 4 of sequentially generating approxi-
mations leading up to Z is computationally intensive because of the potentially
exponential size of these (partial) convex hull representations. The procedure we
propose below instead relies on generating cuts as needed to solve each subproblem
SP based upon its fractionating variables, rather than generating full (partial) convex
hull representations. More importantly, it characterizes these cuts in a fashion that
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permits them to be re-used in a suitably modified form for other subsequent
subproblems. Furthermore, the cuts are generated in the original dimensional space,
and previously generated cuts can be retained or deleted as desired.

As alluded above, the proposed method implicitly generates an appropriate
surrogated representation of Z as needed for each individual SP via an RLT cutting

¯plane approach as follows. Suppose that we are solving SP for a given x. In essence,
we wish to solve

¯ ¯ ¯v(x ) 5 cx 1 minimumhdy : Dy $ b 2 Ax, y [ Yj (21)

but we conceive the implicit solution of this via the problem

¯ ¯ ¯v(x ) 5 cx 1 minimumhdy : Hy 1 Fw $ f 2 Gx j (22)

from (8a), so that we can derive a valid Benders’ cut. (Note that in the presence of a
dual angular structure, (22) would yield a separable system as per (6).) Now
suppose that we adopt a sequential convexification lift-and-project type of cutting
plane scheme to solve (21), using RLT cuts based on enforcing binariness on one
variable as in Balas et al. (1993), or on multiple variables as in Sherali et al. (2000).
(See Section 4 for details on the finite convergence of such a cutting plane
algorithm.) Suppose that we obtain the final cut-enhanced problem that solves (21)

¯as given by (23) below, where (23c) represents the continuous relaxation Y, and
where (23d) represents the set of RLT or lift-and-project cuts generated.

¯ ¯v(x ) 5 cx 1 minimum dy (23a)

¯subject to Dy $ b 2 Ax (23b)

Gy $ g (23c)

¯a y $ b 2 f x for t 5 1, . . . , T . (23d)t t t

Each of the cuts t 5 1, . . . , T in (23d) is derived via the following steps.

¯Step 1. Based on some current fractional solution y, generate an appropriate RLT
5enhancement of Z given as follows (by enforcing binariness on one or more

variables—see Section 4, and in particular, Remark 6 given later for some additional
details):

G x 1 H y 1 F w $ f . (24)t t t t

(In the presence of dual-angularity, this system would have a structure similar to
that in (6).)

¯Step 2. Fix x 5 x, and determine dual multipliers p $ 0 for (24) that solves thet

following separation problem, where e is a conformable vector of ones, and where
(25c) is a normalization constraint (that can be imposed separably in the context of
dual-angular structures).
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¯ ¯Minimize p (H y ) 2 p ( f 2 G x ) (25a)t t t t t

subject to p F 5 0 (25b)t t

e ? p 5 1 (25c)t

p $ 0 . (25d)t

Note that by virtue of the RLT process, an appropriate representation (24) can be
¯generated that yields a negative value in (25). Let p be the solution of (25). Thent

we have that

˜ ˜ ¯p H y $ p ( f 2 G x ) (26)t t t t t

¯deletes the current fractional solution y. Furthermore, with the substitution

˜ ˜ ˜a ; p H , b ; p f , and f ; p G , (27)t t t t t t t t t

we have that (26) is of the form (23d).

The final representation (23) can be used to derive a valid Benders’ cut, as shown in
Proposition 3. This leads to a finitely convergent algorithm, as demonstrated
subsequently in Proposition 4. Following this, we will comment on the re-use of
previously generated cuts for new subproblems (21)–(23) solved for revised values

¯for x.

PROPOSITION 3. Consider Problem (23), and let c , c , and (c , t 5 1, . . . ,T ) be1 2 3t

the optimal nonnegative dual multipliers obtained for the constraints (23b), (23c),
and (23d), respectively. Then, noting (27), the inequality

T

z $ cx 1 c (b 2 Ax) 1 c g 1 O c (b 2 f x) (28)1 2 3t t t
t51

is a valid Benders cut.
Proof. Consider the system (3b) that is derived from (2). Since the original

constraints in (2a) are implied by (2b) via a suitable surrogation process, and noting
the definition of (23c), there exist nonnegative surrogate multiplier matrices t and1

t such that2

t [G, H, F] 5 [A, D, 0], with t f $ b , (29)1 1

and

t [G, H, F] 5 [0, G, 0], with t f $ g . (30)2 2

Similarly, since any lower-level or partial RLT application such as (24) is implied
by (3b) via a surrogation process, there exist nonnegative surrogate multiplier
matrices t , t 5 1, . . . , T, such that3t

t [G, H, F] 5 [G , H , F ], with t f $ f , ;t 5 1, . . . , T . (31)3t t t t 3t t

Now, let us define
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T

˜p̄ 5 c t 1 c t 1 O c p t (32)1 1 2 2 3t t 3t
t51

˜ ¯where p is obtained as an optimum to (25) and satisfies (26). Note that p $ 0, andt

from (26), (29)–(32), we get

T

˜p̄H 5 c D 1 c G 1 O c p H1 2 3t t t
t51

i.e.
T

p̄H 5 c D 1 c G 1 O c a 5 d (33)1 2 3t t
t51

via duality in (23). Moreover, we have from (25b), (29)–(32) that

T

˜p̄F 5 c (0) 1 c (0) 1 O c p F 5 0 . (34)1 2 3t t t
t51

¯Hence, p [ L as defined in (9), and so the constraint

¯z $ cx 1 p( f 2 Gx) (35a)

is a valid Benders’ inequality. But from (26), (29)–(32), we have,

T

˜p̄( f 2 Gx) $ c (b 2 Ax) 1 c g 1 O c p ( f 2 G x)1 2 3t t t t
t51

i.e.
T

˜p̄( f 2 Gx) $ c (b 2 Ax) 1 c g 1 O c p (b 2 f x) . (35b)1 2 3t t t t
t51

Noting (35a) and (35b), we have that (28) is a valid Benders’ cut, and this
completes the proof. h

REMARK 5. Note that the key insignt above is that although the right-hand sides in
(23) are real numbers in the process of solving the underlying subproblem, the
Benders’ inequality generated from its optimal dual solution via (28) needs to
recognize the right-hand sides of both (23b) and (23d) as functions of x, much as in
the usual Benders approach. In particular, we need to store the constant b and thet

vector f for each cut t 5 1, . . . , T in (23d). Note that the parent matrices or RLTt

representations that generated these cuts need not be stored. Furthermore, because of
the global validity of the inequality

a y $ b 2 f x (36)t t t

for any x by virtue of (24) and the surrogation of the type in (26), we can impose
the previously generated cuts of type (23d) in any subsequent subproblem solution,

¯simply by modifying its right-hand side according to the current x. (This would
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occur for each separable subproblem component in the presence of dual angularity,
with the facility of sharing cuts between subproblems being also available in this
context.) This re-use opportunity can greatly benefit the solution procedure. Section
4 further addresses the finite convergence issues related to such a cutting plane
process applied to any given subproblem.

Despite the fact that we might not be generating extreme points of L in the cuts
(28), the following result establishes finite convergence of the overall algorithm,
assuming that each subproblem is solved finitely (as discussed in Section 4 below).

PROPOSITION 4. Suppose that we implement Benders’ algorithm in the traditional
fashion as follows. At each iteration, we solve the relaxed master program (10),
where the Benders’ cuts (10b) are replaced by the current set of cuts of type (28).

¯ ¯ ¯Let (z, x ) be an optimal solution to this relaxed master program, where x [ X >
n ¯h0, 1j . Next, we solve the subproblem (23) to determine the value v(x ) of Problem

¯ ¯ ¯P when x is fixed at x, and accordingly, either terminate if z $ v(x ) (equivalently,
¯ ¯ ¯ ¯z 5 v(x )), or else, generate a Benders’ cut (28) if z # v(x ). Then, this process will
converge finitely with an optimum for Problem P.

Proof. Note that by the validity of (28) in Proposition 3, the result holds true if
¯ ¯we show that we will finitely obtain the termination criterion z $ v(x ). Observe that

¯ ¯by duality in (23), the right-hand side of (28) evaluated at x 5 x yields v(x ). Hence,
¯whenever a previous x is regenerated by the master program, the termination

criterion would hold true. Since there are only a finite number of solutions in
nX > h0, 1j , this must occur finitely, and the proof is complete. h

As mentioned previously, an actual implementation would follow Remark 2. Figure
2 provides a flow-chart for such a process.

EXAMPLE 2. Consider the problem of Example 1. To illustrate the concept of the
proposed approach, suppose that we have a relaxed master program RMP that
currently has the Benders’ inequality (18c), but not (18b). This problem yields the

¯ ¯ ¯solution x 5 1 and z 5 23. We now solve for v(x ) via the following problem,1 1

using a cutting plane process in the spirit of (23).

¯ ¯ ¯v(x ) 5 2x 1 minimumh22y : 23y $ 4x 2 6, y binaryj . (37)1 1 1 1 1 1

¯The continuous optimum for (37) is y 5 2/3. At Step 1 of the cut generation1

process, let the RLT constraints (24) be given by (14b)–(14g) as in the lift-and-
project scheme of Balas et al. (1993). The corresponding separation problem (25) at
Step 2 is given as follows, where (for ‘t’ 5 1), p , . . . , p denote the surrogate11 16

multipliers with respect to the constraints (14b)–(14g), respectively.
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Figure 2. Flow-chart of an implementation for the proposed Benders’ Algorithm.

2 2
] ]Minimize 2p 2 2p 1 p 1 p 2 p11 12 13 14 153 3

subject to 24p 1 4p 2 p 2 p 1 p 1 p 5 011 12 13 14 15 16

p 1 p 1 p 1 p 1 p 1 p 5 111 12 13 14 15 16

(p , . . . , p ) $ 0 .11 16

˜ ˜ ˜ ˜ ˜ ˜This problem yields the solution p 5 1/5, p 5 4/5, p 5 p 5 p 5 p 5 0,11 15 12 13 14 16

with an objective value of 22/15, thereby indicating that a cut is generated. From
(27), this cut yields

1 4 4
] ] ]a 5 2 , b 5 2 , and f 5 2 . (38)1 1 15 5 5

The globally valid cut of type (32) is then given via (26) as
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1 4 4
] ] ]2 y $ 2 1 x (39)1 15 5 5

which corresponds to the facet of Z depicted in Figure 1. The particular cut (23d)
¯that is incorporated within (37) is obtained by fixing x 5 x ; 1 in (39). This yields1 1

the inequality 2y $ 0, thereby producing (23) as1

¯ ¯ ¯v(x ) 5 2x 1 minimum 22y (40a)1 1 1

¯subject to 23y $ 4x 2 6 5 22 (40b)1 1

¯2y $ 24 1 4x 5 0 (40c)1 1

0 # y # 1 . (40d)1

¯The optimal solution is given by y 5 0, with the dual multipliers with respect to1

¯(40b) and (40d) being zeroes and with respect to (40c) being 2, yielding v(x ) 51

¯21 . z 5 23. Hence, we generate the Benders’ cut (28) as

z $ 2x 1 2(24 1 4x )1 1

i.e.

z $ 7x 2 8 .1

This produces the revised relaxed Benders’ master program given by (18) as in
Example 1, which results in an optimal solution being detected as before.

4. Finite convergence of a cutting plane procedure for solving subproblems

In the foregoing section, we have developed a Benders’ partitioning approach for
Problem P of the type (1) based on the use of a suitable cutting plane approach for
solving each subproblem (21) via (23). The cuts derived via (24)–(27) were
generated to be directly valid for Z itself, but were then imposed on the current

¯ ¯subproblem by fixing x 5 x, where x corresponds to the given first-stage decision for
the present subproblem. This not only permitted their re-use for other subproblems,
but also enabled the derivation of the required Benders’ cuts that induced an overall
finitely convergent process. In this section, we now address the issue of designing a

¯finitely convergent cutting plane procedure of this type for computing v(x ) defined
in (21) via (23). (As alluded variously in the foregoing section, in the context of
dual-angular structures, the separability of (21) and the partial convex hull
requirement stipulated by Proposition 2 can be exploited below with obvious
modifications.)

Note that in practice, one could use a variety of lift-and-project or RLT cuts as
presented in Balas et al. (1993) and Sherali et al. (2000) to implement (23).
However, in order to ensure that such a process finitely solves the underlying 0–1
mixed-integer program, some care needs to be exerised while sequentially construct-
ing the (partial) convex hull representation that is necessary to solve this problem.
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As in Balas et al.’s (1993) lift-and-project cutting plane algorithm, we rely on
Jeroslow’s (1980) cutting plane game concept for facial disjunctive programs. (Note
that (21), and likewise Problem P given by (1), is a facial disjunctive program in
that it involves the conjunction of the disjunctions that y # 0 or y $ 1 (in concertj j

with 0 # y # 1) for each j 5 1, . . . , p, along with the facial property that thej

intersection of either of these disjunctive restrictions with the continuous feasible
region of (21) defines a face of this region.) However, there is one important
variation in the standard process that we need to account for, in that we are
generating cuts that are valid for Z of Eq. (2) in our context, and then imposing

¯these cuts in (23) by fixing x 5 x. As Proposition 5 below establishes, the key
¯element that validates this variation is that for any binary feasible solution x, if we
¯denote the convex hull of the feasible region of the subproblem (21) as Z(x ) and

view this region in the form

¯ ¯Z(x ) 5 convh(x, y) : Dy $ b 2 Ax, y [ Y, and x 5 x j , (42a)

then we effectively have that

¯ ¯Z(x ) 5 Z > h(x, y) : x 5 x j (42b)

since the right-hand side in (42b) defines a face of Z because Z includes the
restrictions 0 # x # e in its definition. Consequently, we can derive the required

¯description of the facial structure of Z(x ) given by (42a) that is necessary for solving
the subproblem (21) by generating appropriate valid inequalities for Z, and then

¯restricting x 5 x. Figure 3 provides a flow-chart for such a cutting plane process in
the context of lift-and-project cuts of Balas et al. (1993), and Remark 6 below
provides comments on using more general RLT cuts along with some implementa-
tion suggestions. The following result establishes finite convergence of the pro-
cedure presented in Figure 3.

PROPOSITION 5. The cutting plane procedure of Figure 3 finitely solves the
subproblem (21) via (23), yielding a family of valid inequalities (23d) that can be
re-used for any other subproblem by revising the corresponding first-stage decision
x̄.

Proof. First of all, note that the cut generation process of Section 3 is based on
deriving valid inequalities for relaxations of Z of the type (24), obtained by applying
RLT while enforcing binariness on a single variable y to some system of type (43)q

(see Figure 3). Hence, inductively, each inequality generated of the form f x 1t

a y $ b is valid for Z, and therefore, can be imposed for any subproblem by fixingt t

the x-variables to the corresponding first-stage decision values.
Next, let us view the subproblem (21) that is to be solved in the following form

(augmented with an initial set of valid cuts), where x is declared to be a variable, but
¯the parameter M is assumed to be sufficiently large so that we necessarily have x 5 x

at optimality in this problem (44), as well as in its LP relaxation.
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Figure 3. Cutting plane procedure for solving any subproblem.

¯ ¯v(x ) 5 cx 1 minimum dy 1 M O x 1 O (1 2 x )j jF G
j :x 50 j :x 51j j

subject to Ax 1 Dy $ b

Gy $ g (44)

f x 1 a y $ b ;t [ tt t t 0

0 # x # e, y [ h0, 1j ;i 5 1, . . . , p .i

Now, suppose that we apply the lift-and-project cutting plane procedure described in
Balas et al. (1993) to Problem (44). By making M sufficiently large, we can assume
that each LP relaxation solved in the (finite) iterative process will continue to yield
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¯x 5 x, so that each of these LP relaxations can effectively be solved via (23) by
¯ ¯fixing x 5 x as in the flow-chart of Figure 3. Note that if y is a resulting extreme

¯ ¯point solution, then (x, y ) is a vertex of the continuous relaxation to (44) augmented
¯with any additional cuts, since x 5 x describes a face of this latter region.

Consequently, the procedure of Figure 3 is precisely the lift-and-project cutting
plane scheme that is proven in Theorem 3.1 of Balas et al. (1993) to converge
finitely as applied to Problem (44), and this completes the proof. h

REMARK 6. Note that the lift-and-project cutting plane procedure of Balas et al.
(1993) is predicated on generating cuts based on enforcing binariness on 0–1
variables one at a time. A more general RLT process of Sherali and Adams (1990,
1994) could be used to devise a cut generation scheme that likewise enforces
binariness on more than one variable at a time. In such a process, the 0–1 variables
can be grouped into batches containing one or more variables per batch, perhaps
based on the initial LP solution. A similar scheme as in Figure 3 could then be
followed, in which the relaxation (24) of Z is generated by applying RLT while
enforcing binariness on the highest indexed batch of variables that contains some
fractionating variable(s), to a system (43) that contains cuts generated previously for
lower-indexed batches. The convergence of such a problem would follow from
Jeroslow’s (1980) cutting plane game as in Proposition 5. Of course, the advantage
of considering batches of cardinality one is that the associated separation problems
are relatively easier to solve. However, Sherali et al. (2000) have recently
demonstrated how stronger RLT cuts accruing from the simultaneous consideration
of multiple variables can be efficiently generated by using suitably restricted
projections of the associated dual cone. Furthermore, in practical implementations,
one could employ all the retained cuts in (43) of the procedure of Figure 3 or
consider the deletion of cuts based on certain filtering criteria as well. In addition, as
alluded in Remarks 3 and 4, and as evident from the foregoing discussion, we could

¯prematurely abort the solution of any particular subproblem for a given x 5 x via the
described cutting plane scheme, and generate a corresponding valid Benders’ cut.

¯This might entail regenerating a previous x, while not yet having solved Problem P.
However, so long as complete subproblem solutions are enforced after a finite
number of iterations or even finitely often, we would obtain an overall finitely
convergent process. Investigations of this type require extensive computational
experimentations that we hope to pursue in future research.

5. Summary and conclusions

In this paper, we have modified Benders’ decomposition method using RLT and
lift-and-project cuts to develop a new method for solving discrete optimization
problems that yield 0–1 mixed-integer subproblems, such as those encountered in
stochastic programs with integer recourse. Viewing the problem implicitly in the
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light of a suitably defined convex hull representation, with appropriate modifications
when the original problem exhibits a dual-angular structure, we have demonstrated
how cutting planes could be generated to derive a partial description of this convex
hull representation as needed in order to devise a finitely convergent solution
procedure. Importantly, the classes of cuts used in the subproblems were derived in
terms of functions of the first-stage x-variables, enabling them to be re-used in
subsequent subproblems simply by revising them according to the corresponding
x-solutions. Additionally, globally valid Benders’ cuts were obtained by recognizing
these cuts as functions of the first-stage variables. The ability to reuse cutting planes
from one subproblem to the next in this fashion is useful from the viewpoint of
potentially reducing the computational effort required to solve the discrete subprob-
lems, while providing globally valid Benders’ cuts that enhance the lower-bounding
mechanism via the relaxed master program. The focus of this paper has been on
developing the theory for such a modified Benders’ approach. A follow-up paper
will conduct a variety of computational tests, particularly in the context of stochastic
programs with integer recourse.
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